What is Chainlink?

Karolina

23 Jan 2024
What is Chainlink?

At the heart of blockchain's functionality are smart contracts, self-executing contracts with the terms of the agreement directly written into code. While smart contracts have the potential to automate and streamline a wide range of processes, they are inherently limited by their inability to access real-world data or external systems on their own. This is where Chainlink enters the scene, offering a groundbreaking solution to one of the most pressing challenges in the blockchain ecosystem.

Chainlink is a decentralized oracle network designed to bridge the gap between smart contracts on the blockchain and real-world data. It acts as a middleware, allowing smart contracts to securely and reliably interact with external data feeds, web APIs, and traditional bank payment systems. This capability is crucial for the execution of smart contracts under specific conditions that depend on real-time information, such as market prices, weather data, or other external APIs.

Historical Background and Development

Launched in June 2017 by the company SmartContract, Chainlink was conceived to create a secure, blockchain-agnostic layer. Layer that facilitates data exchange between blockchains and the outside world. Co-founded by Sergey Nazarov and Steve Ellis, Chainlink aims to solve the oracle problem. This problem is the challenge of providing smart contracts with accurate and tamper-proof data without sacrificing decentralization or security.

Oracles play a critical role in the functionality of smart contracts. It acts as a data feeds that trigger contract execution upon the fulfillment of predefined conditions. However, relying on a single source of truth or a centralized oracle can introduce points of failure and security vulnerabilities. Chainlink addresses these concerns by creating a network of decentralized oracles.

By enabling seamless interaction, Chainlink opens up new avenues for blockchain integration across various sectors. For example finance, insurance, and supply chain management.

The Problem with Smart Contracts

Smart contracts are powerful tools that automate the execution of agreements on the blockchain, ensuring that transactions are processed when predefined conditions are met. However, a significant limitation arises from their inability to natively access or verify external data. This means that without an intermediary, smart contracts cannot interact with any information or systems outside their native blockchain. This limitation severely restricts the scope of applications for smart contracts, confining them to operations that only rely on data available within the blockchain.

The Solution: Decentralized Oracles

Oracles serve as bridges between the blockchain and the external world, enabling smart contracts to access off-chain data. However, traditional oracles introduce a central point of failure, undermining the decentralized nature of blockchains. Decentralized oracles, on the other hand, mitigate this risk by sourcing data from multiple, independent oracles and aggregating it before feeding it to the smart contract. This approach not only maintains the integrity and security of the data but also preserves the decentralized ethos of blockchain technology.

Source: Chainlink Website

Decentralization: Ensuring Data Integrity and Security

Chainlink's decentralized architecture is foundational to its ability to provide secure and reliable data to smart contracts. By distributing the data sourcing and aggregation process across multiple nodes, Chainlink ensures that the data remains tamper-proof and reflective of true market conditions, thereby maintaining the integrity and security of the data provided to smart contracts.

Flexibility: Adaptable to Various Blockchains

One of strengths is its blockchain-agnostic design, allowing it to serve as an oracle solution for any blockchain. This flexibility is crucial for the widespread adoption of blockchain technology, as it enables Chainlink to support a diverse range of applications across different blockchain environments, facilitating seamless data integration and interoperability.

Trustworthiness: Reputation System for Node Operators

Chainlink incorporates a comprehensive reputation system that monitors the performance and reliability of node operators. This system incentivizes nodes to provide accurate and timely data, as their reputation and the potential for future earnings are directly tied to their performance. This not only ensures the reliability of the data provided to smart contracts but also fosters a trustworthy ecosystem of oracle services.

LINK is the native cryptocurrency token of the Chainlink network, designed to facilitate the various operations within its ecosystem. As an ERC-20 token on the Ethereum blockchain, LINK is used as the primary medium of exchange for services on the Chainlink network. It plays a crucial role in ensuring the proper functioning of the decentralized oracle network by compensating node operators for retrieving data, formatting it, and guaranteeing uptime by staking LINK as collateral.

Source: CoinMarketCap
  • Node Operator Payments. LINK tokens are used to compensate Chainlink node operators for their efforts in providing secure and reliable data to the smart contracts. This includes rewards for retrieving data, processing queries, and ensuring the data's integrity.
  • Staking. Although staking is a feature that is being progressively introduced into the Chainlink ecosystem, it represents a significant use case for LINK tokens. Staking involves locking up LINK tokens as a form of security deposit to guarantee the performance and reliability of node operators within the network.
  • Governance. In future developments, LINK might also play a role in the governance of the Chainlink ecosystem, allowing token holders to vote on key decisions and protocols within the network.

Key Takeaways

Key TakeawayDescription
FunctionalityChainlink addresses the oracle problem, providing a secure bridge between smart contracts and external data sources.
Decentralized OraclesUtilizes decentralized oracles to ensure data integrity and security, mitigating the risk of centralized points of failure.
LINK CryptocurrencyLINK tokens facilitate operations within the Chainlink ecosystem, including compensating node operators and potentially governing the network.
Key Takeaways

Conclusion

Chainlink represents a pivotal innovation in the blockchain ecosystem, addressing the critical "oracle problem" by providing a secure bridge. Its decentralized oracle network ensures that smart contracts can interact with the real world in a trustless manner. This opens up a myriad of possibilities for automation and decentralized applications.

In essence, Chainlink not only broadens the scope and functionality of smart contracts but also embodies the decentralization and security principles of blockchain technology. Its ongoing development and adoption are testament to the blockchain community's recognition of the need for data exchange mechanisms.

If you are interested in utilizing Chainlink or other blockchain-based solutions for your project, please reach out to contact@nextrope.com

FAQ

What is the problem that Chainlink aims to solve?

  • Chainlink addresses the limitation of smart contracts by providing them with access to real-world data and external systems, enabling them to execute based on real-time information securely.

How does Chainlink work to bridge the gap between smart contracts and external data sources?

  • Chainlink utilizes a decentralized oracle network to securely and reliably interact with external data feeds, web APIs, and traditional bank payment systems, acting as a middleware between smart contracts and the real world.

What are the key features of Chainlink?

  • Chainlink's key features include decentralization, ensuring data integrity and security; flexibility, being adaptable to various blockchains; and trustworthiness, incorporating a reputation system for node operators to maintain a reliable ecosystem.

More about this Topic on Nextrope Blog

  1. Chainlink vs Polkadot
  2. NFT and Gaming: Chainlink Use Cases
  3. Chainlink in DeFi: Use Cases
  4. Chainlink vs. Avalanche: Exploring the Blockchain Frontier
  5. Authorization and Identity: Chainlink Use Cases
  6. Chainlink and On-Chain Finance Use Cases

Tagi

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Aethir Tokenomics – Case Study

Kajetan Olas

22 Nov 2024
Aethir Tokenomics – Case Study

Authors of the contents are not affiliated to the reviewed project in any way and none of the information presented should be taken as financial advice.

In this article we analyze tokenomics of Aethir - a project providing on-demand cloud compute resources for the AI, Gaming, and virtualized compute sectors.
Aethir aims to aggregate enterprise-grade GPUs from multiple providers into a DePIN (Decentralized Physical Infrastructure Network). Its competitive edge comes from utlizing the GPUs for very specific use-cases, such as low-latency rendering for online games.
Due to decentralized nature of its infrastructure Aethir can meet the demands of online-gaming in any region. This is especially important for some gamer-abundant regions in Asia with underdeveloped cloud infrastructure that causes high latency ("lags").
We will analyze Aethir's tokenomics, give our opinion on what was done well, and provide specific recommendations on how to improve it.

Evaluation Summary

Aethir Tokenomics Structure

The total supply of ATH tokens is capped at 42 billion ATH. This fixed cap provides a predictable supply environment, and the complete emissions schedule is listed here. As of November 2024 there are approximately 5.2 Billion ATH in circulation. In a year from now (November 2025), the circulating supply will almost triple, and will amount to approximately 15 Billion ATH. By November 2028, today's circulating supply will be diluted by around 86%.

From an investor standpoint the rational decision would be to stake their tokens and hope for rewards that will balance the inflation. Currently the estimated APR for 3-year staking is 195% and for 4-year staking APR is 261%. The rewards are paid out weekly. Furthermore, stakers can expect to get additional rewards from partnered AI projects.

Staking Incentives

Rewards are calculated based on the staking duration and staked amount. These factors are equally important and they linearly influence weekly rewards. This means that someone who stakes 100 ATH for 2 weeks will have the same weekly rewards as someone who stakes 200 ATH for 1 week. This mechanism greatly emphasizes long-term holding. That's because holding a token makes sense only if you go for long-term staking. E.g. a whale staking $200k with 1 week lockup. will have the same weekly rewards as person staking $1k with 4 year lockup. Furthermore the ATH staking rewards are fixed and divided among stakers. Therefore Increase of user base is likely to come with decrease in rewards.
We believe the main weak-point of Aethirs staking is the lack of equivalency between rewards paid out to the users and value generated for the protocol as a result of staking.

Token Distribution

The token distribution of $ATH is well designed and comes with long vesting time-frames. 18-month cliff and 36-moths subsequent linear vesting is applied to team's allocation. This is higher than industry standard and is a sign of long-term commitment.

  • Checkers and Compute Providers: 50%
  • Ecosystem: 15%
  • Team: 12.5%
  • Investors: 11.5%
  • Airdrop: 6%
  • Advisors: 5%

Aethir's airdrop is divided into 3 phases to ensure that only loyal users get rewarded. This mechanism is very-well thought and we rate it highly. It fosters high community engagement within the first months of the project and sets the ground for potentially giving more-control to the DAO.

Governance and Community-Led Development

Aethir’s governance model promotes community-led decision-making in a very practical way. Instead of rushing with creation of a DAO for PR and marketing purposes Aethir is trying to make it the right way. They support projects building on their infrastructure and regularly share updates with their community in the most professional manner.

We believe Aethir would benefit from implementing reputation boosted voting. An example of such system is described here. The core assumption is to abandon the simplistic: 1 token = 1 vote and go towards: Votes = tokens * reputation_based_multiplication_factor.

In the attached example, reputation_based_multiplication_factor rises exponentially with the number of standard deviations above norm, with regard to user's rating. For compute compute providers at Aethir, user's rating could be replaced by provider's uptime.

Perspectives for the future

While it's important to analyze aspects such as supply-side tokenomics, or governance, we must keep in mind that 95% of project's success depends on demand-side. In this regard the outlook for Aethir may be very bright. The project declares $36M annual reccuring revenue. Revenue like this is very rare in the web3 space. Many projects are not able to generate any revenue after succesfull ICO event, due to lack fo product-market-fit.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

Quadratic Voting in Web3

Kajetan Olas

04 Dec 2024
Quadratic Voting in Web3

Decentralized systems are reshaping how we interact, conduct transactions, and govern online communities. As Web3 continues to advance, the necessity for effective and fair voting mechanisms becomes apparent. Traditional voting systems, such as the one-token-one-vote model, often fall short in capturing the intensity of individual preferences, which can result in centralization. Quadratic Voting (QV) addresses this challenge by enabling individuals to express not only their choices but also the strength of their preferences.

In QV, voters are allocated a budget of credits that they can spend to cast votes on various issues. The cost of casting multiple votes on a single issue increases quadratically, meaning that each additional vote costs more than the last. This system allows for a more precise expression of preferences, as individuals can invest more heavily in issues they care deeply about while conserving credits on matters of lesser importance.

Understanding Quadratic Voting

Quadratic Voting (QV) is a voting system designed to capture not only the choices of individuals but also the strength of their preferences. In most DAO voting mechanisms, each person typically has one vote per token, which limits the ability to express how strongly they feel about a particular matter. Furthermore, QV limits the power of whales and founding team who typically have large token allocations. These problems are adressed by making the cost of each additional vote increase quadratically.

In QV, each voter is given a budget of credits or tokens that they can spend to cast votes on various issues. The key principle is that the cost to cast n votes on a single issue is proportional to the square of n. This quadratic cost function ensures that while voters can express stronger preferences, doing so requires a disproportionately higher expenditure of their voting credits. This mechanism discourages voters from concentrating all their influence on a single issue unless they feel very strongly about it. In the context of DAOs, it means that large holders will have a hard-time pushing through with a proposal if they'll try to do it on their own.

Practical Example

Consider a voter who has been allocated 25 voting credits to spend on several proposals. The voter has varying degrees of interest in three proposals: Proposal A, Proposal B, and Proposal C.

  • Proposal A: High interest.
  • Proposal B: Moderate interest.
  • Proposal C: Low interest.

The voter might allocate their credits as follows:

Proposal A:

  • Votes cast: 3
  • Cost: 9 delegated tokens

Proposal B:

  • Votes cast: 2
  • Cost: 4 delegated tokens

Proposal C:

  • Votes cast: 1
  • Cost: 1 delegated token

Total delegated tokens: 14
Remaining tokens: 11

With the remaining tokens, the voter can choose to allocate additional votes to the proposals based on their preferences or save for future proposals. If they feel particularly strong about Proposal A, they might decide to cast one more vote:

Additional vote on Proposal A:

  • New total votes: 4
  • New cost: 16 delegated tokens
  • Additional cost: 16−9 = 7 delegated tokens

Updated total delegated tokens: 14+7 = 21

Updated remaining tokens: 25−21 = 425 - 21 = 4

This additional vote on Proposal A costs 7 credits, significantly more than the previous vote, illustrating how the quadratic cost discourages excessive influence on a single issue without strong conviction.

Benefits of Implementing Quadratic Voting

Key Characteristics of the Quadratic Cost Function

  • Marginal Cost Increases Linearly: The marginal cost of each additional vote increases linearly. The cost difference between casting n and n−1 votes is 2n−1.
  • Total Cost Increases Quadratically: The total cost to cast multiple votes rises steeply, discouraging voters from concentrating too many votes on a single issue without significant reason.
  • Promotes Egalitarian Voting: Small voters are encouraged to participate, because relatively they have a much higher impact.

Advantages Over Traditional Voting Systems

Quadratic Voting offers several benefits compared to traditional one-person-one-vote systems:

  • Captures Preference Intensity: By allowing voters to express how strongly they feel about an issue, QV leads to outcomes that better reflect the collective welfare.
  • Reduces Majority Domination: The quadratic cost makes it costly for majority groups to overpower minority interests on every issue.
  • Encourages Honest Voting: Voters are incentivized to allocate votes in proportion to their true preferences, reducing manipulation.

By understanding the foundation of Quadratic Voting, stakeholders in Web3 communities can appreciate how this system supports more representative governance.

Conclusion

Quadratic voting is a novel voting system that may be used within DAOs to foster decentralization. The key idea is to make the cost of voting on a certain issue increase quadratically. The leading player that makes use of this mechanism is Optimism. If you're pondering about the design of your DAO, we highly recommend taking a look at their research on quadratic funding.

If you're looking to create a robust governance model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure that your DAO will stand out as a beacon of innovation and resilience in the long term.