Cryptoeconomics vs Token Engineering: Are They the Same?

Kajetan Olas

07 Mar 2024
Cryptoeconomics vs Token Engineering: Are They the Same?

In the dynamic realm of blockchain technology, two terms are increasingly gaining traction: cryptoeconomics and token engineering. As the blockchain landscape evolves, these concepts are becoming crucial for the development of robust and efficient decentralized systems. While they are often used interchangeably, cryptoeconomics and token engineering actually have different meanings. Cryptoeconomics lays the theoretical groundwork, posing the vital questions that guide the creation of decentralized networks. Token engineering, on the other hand, is the practical application, the methodology used to answer these questions and solve the problems that arise. This article aims to explore the relationship between the two.

Understanding Cryptoeconomics

Cryptoeconomics: The 'Why' Behind Decentralized Systems

Cryptoeconomics is not just a branch of economics; it is a multidisciplinary field that blends cryptographic techniques with economic incentives. At its core, cryptoeconomics is about understanding and designing the incentives and economic mechanisms that encourage desired behaviors in decentralized networks. It is a theoretical science that delves deep into the 'why' – why participants in a decentralized system will act in a way that ensures the network's functionality, security, and prosperity.

  • Economic Models and Incentive Structures: The economic models in cryptoeconomics are designed to align the interests of diverse network participants. By leveraging token incentives and penalties, these models ensure that every participant, from miners to end-users, acts in a way that is beneficial to the network's overall health and security.
  • Security and Trust: Cryptoeconomics is crucial for establishing trust in a trustless environment – the blockchain. It underpins the security models that protect decentralized networks from malicious actors. The economic cost of attacking the network is designed to be so high that it becomes infeasible.
  • Governance and Network Maintenance: It also involves the governance of decentralized systems, determining how decisions are made and how the network can evolve over time. This includes the creation of policies for the distribution of new tokens, transaction validation processes, and consensus mechanisms.

In conclusion, cryptoeconomics serves as the backbone of blockchain technology, posing fundamental questions about the structure and sustainability of decentralized systems. By understanding what needs to be optimized and why, cryptoeconomics provides a guiding light for the entire blockchain industry. However, identifying the optimal economic model is just the beginning. The implementation of these models – the 'how' – is where token engineering comes into play, bridging the gap between theory and practice.

Delving into Token Engineering

Token Engineering: Crafting the 'How' of Tokenized Ecosystems

While cryptoeconomics provides the theoretical scaffolding, token engineering is the discipline that brings theory to life through design and implementation. It is the engineering of digital tokens, applying systematic tools and methods to create functional and resilient token-based systems. Token engineering focuses on the 'how', utilizing a methodological toolkit to construct the mechanisms that guide interactions within the system.

  • Design and Functionality: At the heart of token engineering is the design process. It involves defining the token's purpose, features, and utility within the ecosystem. It's a meticulous process that requires a profound understanding of the desired outcomes and behaviors that need to be incentivized.
  • System Analysis and Modeling: Token engineers employ various models to predict how tokens will perform in different scenarios. This includes simulating economic models, stress-testing the system, and ensuring that the token behaves as intended under various conditions.
  • Interdisciplinary Approach: The field of token engineering is inherently interdisciplinary, drawing from areas such as game theory, computer science, and behavioral economics. This convergence of knowledge is essential to address the complex challenges that arise in token economies.

Token engineering is thus a comprehensive approach to ensuring that the 'what' identified by cryptoeconomics is achieved efficiently in practice. With the right tools and methodologies, token engineers strive to optimize tokenized systems, ensuring their functionality, scalability, and security.

Comparing and Contrasting

While cryptoeconomics and token engineering are interdependent, they have distinct roles and methodologies within the broader blockchain landscape.

Common Grounds

Both disciplines share a common goal: to optimize and ensure the integrity of decentralized systems. Cryptoeconomics and token engineering converge in their reliance on economic theory and principles to design systems that can operate securely.

  • Interdisciplinary Foundations: They both draw from a similar pool of interdisciplinary knowledge, integrating insights from behavioral economics, game theory, and computer science.
  • Focus on Optimization: Optimization is a shared objective, whether it's about determining the optimal incentive structure in cryptoeconomics or fine-tuning the individual components within a token system in token engineering.

Key Differences

Despite these similarities, cryptoeconomics and token engineering diverge in their focus and application.

  • Macro vs. Micro Perspective: Cryptoeconomics tends to address the broader, macroeconomic questions of blockchain ecosystems, such as overall network incentives and system security. Token engineering, conversely, zooms in on the micro-level details, focusing on the specific design and functionality of individual tokens.
  • Theory vs. Application: Cryptoeconomics is theoretical, concerned with the 'why' behind the economic strategies that govern decentralized systems. Token engineering is practical, addressing the 'how' with a hands-on approach to creating and implementing token systems.
  • Methodological Tools: The methodologies of the two fields also differ. Cryptoeconomics is often concerned with abstract reasoning and theoretical models. Token engineering uses concrete tools and simulations to test and refine token functionality.

Understanding the nuanced differences and connections between cryptoeconomics and token engineering is vital. It ensures that both the theoretical and practical aspects are aligned to create harmonious, resilient, and efficient decentralized ecosystems.

The Future Landscape

The future of blockchain is inextricably linked to the advancements in both cryptoeconomics and token engineering. As these fields mature, their evolution will play a role in the entire digital economy.

  • Advancements in Token Engineering: We can expect to see more sophisticated tools and frameworks emerging within token engineering. They will be aimed at simplifying the design process while enhancing the robustness of tokenized systems. This will likely include the integration of artificial intelligence to automate certain aspects of the engineering process.
  • Cryptoeconomic Research: Research in cryptoeconomics will continue to expand to new economic models that better account for the complexities of decentralized networks. These models will be essential in addressing scalability, privacy, and interoperability challenges.
  • Cross-disciplinary Innovation: The intersection of cryptoeconomics and token engineering with other technological advancements like IoT is expected to generate novel use cases. 
  • Policy and Governance: As these disciplines develop, they will also influence policy-making and governance structures within the digital economy. Regulators may begin to adopt more nuanced and informed approaches to overseeing the token engineering process.

The trajectory of cryptoeconomics and token engineering points towards an era where decentralized systems are more integrated into mainstream applications. The synergy between these fields' theoretical and practical elements will likely fuel the next wave of innovation in blockchain technology.

Conclusion

Cryptoeconomics lays down the theoretical questions of 'why' and 'what to optimize,' setting the stage for the necessary incentive structures and governance models. Token engineering, with its methodological toolkit, addresses the 'how' and 'how to optimize,' turning theory into practical, functioning systems.

Understanding both disciplines' individual contributions and their interplay is crucial for anyone involved in blockchain development. As we move forward, the line between cryptoeconomics and token engineering may blur even further. That’s because each discipline continuously informs and refines the other.

If you're looking to design a sustainable tokenomics model for your DeFi project, please reach out to contact@nextrope.com. Our team is ready to help you create a tokenomics structure that aligns with your project's long-term growth and market resilience.

FAQ

What distinguishes cryptoeconomics from token engineering?

  • Cryptoeconomics is the theoretical framework focused on incentives in decentralized systems. Token engineering applies these theories to build resilient token systems.

How do both fields contribute to blockchain development?

  • Cryptoeconomics provides the incentive models, while token engineering designs and implements these models in real-world applications.

What role do economic models play in cryptoeconomics?

  • They align participant incentives to ensure network health and security.

Does technological advancement affect their interplay?

  • Technological progress shapes the evolution and integration of both fields in the digital economy.

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Aethir Tokenomics – Case Study

Kajetan Olas

22 Nov 2024
Aethir Tokenomics – Case Study

Authors of the contents are not affiliated to the reviewed project in any way and none of the information presented should be taken as financial advice.

In this article we analyze tokenomics of Aethir - a project providing on-demand cloud compute resources for the AI, Gaming, and virtualized compute sectors.
Aethir aims to aggregate enterprise-grade GPUs from multiple providers into a DePIN (Decentralized Physical Infrastructure Network). Its competitive edge comes from utlizing the GPUs for very specific use-cases, such as low-latency rendering for online games.
Due to decentralized nature of its infrastructure Aethir can meet the demands of online-gaming in any region. This is especially important for some gamer-abundant regions in Asia with underdeveloped cloud infrastructure that causes high latency ("lags").
We will analyze Aethir's tokenomics, give our opinion on what was done well, and provide specific recommendations on how to improve it.

Evaluation Summary

Aethir Tokenomics Structure

The total supply of ATH tokens is capped at 42 billion ATH. This fixed cap provides a predictable supply environment, and the complete emissions schedule is listed here. As of November 2024 there are approximately 5.2 Billion ATH in circulation. In a year from now (November 2025), the circulating supply will almost triple, and will amount to approximately 15 Billion ATH. By November 2028, today's circulating supply will be diluted by around 86%.

From an investor standpoint the rational decision would be to stake their tokens and hope for rewards that will balance the inflation. Currently the estimated APR for 3-year staking is 195% and for 4-year staking APR is 261%. The rewards are paid out weekly. Furthermore, stakers can expect to get additional rewards from partnered AI projects.

Staking Incentives

Rewards are calculated based on the staking duration and staked amount. These factors are equally important and they linearly influence weekly rewards. This means that someone who stakes 100 ATH for 2 weeks will have the same weekly rewards as someone who stakes 200 ATH for 1 week. This mechanism greatly emphasizes long-term holding. That's because holding a token makes sense only if you go for long-term staking. E.g. a whale staking $200k with 1 week lockup. will have the same weekly rewards as person staking $1k with 4 year lockup. Furthermore the ATH staking rewards are fixed and divided among stakers. Therefore Increase of user base is likely to come with decrease in rewards.
We believe the main weak-point of Aethirs staking is the lack of equivalency between rewards paid out to the users and value generated for the protocol as a result of staking.

Token Distribution

The token distribution of $ATH is well designed and comes with long vesting time-frames. 18-month cliff and 36-moths subsequent linear vesting is applied to team's allocation. This is higher than industry standard and is a sign of long-term commitment.

  • Checkers and Compute Providers: 50%
  • Ecosystem: 15%
  • Team: 12.5%
  • Investors: 11.5%
  • Airdrop: 6%
  • Advisors: 5%

Aethir's airdrop is divided into 3 phases to ensure that only loyal users get rewarded. This mechanism is very-well thought and we rate it highly. It fosters high community engagement within the first months of the project and sets the ground for potentially giving more-control to the DAO.

Governance and Community-Led Development

Aethir’s governance model promotes community-led decision-making in a very practical way. Instead of rushing with creation of a DAO for PR and marketing purposes Aethir is trying to make it the right way. They support projects building on their infrastructure and regularly share updates with their community in the most professional manner.

We believe Aethir would benefit from implementing reputation boosted voting. An example of such system is described here. The core assumption is to abandon the simplistic: 1 token = 1 vote and go towards: Votes = tokens * reputation_based_multiplication_factor.

In the attached example, reputation_based_multiplication_factor rises exponentially with the number of standard deviations above norm, with regard to user's rating. For compute compute providers at Aethir, user's rating could be replaced by provider's uptime.

Perspectives for the future

While it's important to analyze aspects such as supply-side tokenomics, or governance, we must keep in mind that 95% of project's success depends on demand-side. In this regard the outlook for Aethir may be very bright. The project declares $36M annual reccuring revenue. Revenue like this is very rare in the web3 space. Many projects are not able to generate any revenue after succesfull ICO event, due to lack fo product-market-fit.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

Quadratic Voting in Web3

Kajetan Olas

04 Dec 2024
Quadratic Voting in Web3

Decentralized systems are reshaping how we interact, conduct transactions, and govern online communities. As Web3 continues to advance, the necessity for effective and fair voting mechanisms becomes apparent. Traditional voting systems, such as the one-token-one-vote model, often fall short in capturing the intensity of individual preferences, which can result in centralization. Quadratic Voting (QV) addresses this challenge by enabling individuals to express not only their choices but also the strength of their preferences.

In QV, voters are allocated a budget of credits that they can spend to cast votes on various issues. The cost of casting multiple votes on a single issue increases quadratically, meaning that each additional vote costs more than the last. This system allows for a more precise expression of preferences, as individuals can invest more heavily in issues they care deeply about while conserving credits on matters of lesser importance.

Understanding Quadratic Voting

Quadratic Voting (QV) is a voting system designed to capture not only the choices of individuals but also the strength of their preferences. In most DAO voting mechanisms, each person typically has one vote per token, which limits the ability to express how strongly they feel about a particular matter. Furthermore, QV limits the power of whales and founding team who typically have large token allocations. These problems are adressed by making the cost of each additional vote increase quadratically.

In QV, each voter is given a budget of credits or tokens that they can spend to cast votes on various issues. The key principle is that the cost to cast n votes on a single issue is proportional to the square of n. This quadratic cost function ensures that while voters can express stronger preferences, doing so requires a disproportionately higher expenditure of their voting credits. This mechanism discourages voters from concentrating all their influence on a single issue unless they feel very strongly about it. In the context of DAOs, it means that large holders will have a hard-time pushing through with a proposal if they'll try to do it on their own.

Practical Example

Consider a voter who has been allocated 25 voting credits to spend on several proposals. The voter has varying degrees of interest in three proposals: Proposal A, Proposal B, and Proposal C.

  • Proposal A: High interest.
  • Proposal B: Moderate interest.
  • Proposal C: Low interest.

The voter might allocate their credits as follows:

Proposal A:

  • Votes cast: 3
  • Cost: 9 delegated tokens

Proposal B:

  • Votes cast: 2
  • Cost: 4 delegated tokens

Proposal C:

  • Votes cast: 1
  • Cost: 1 delegated token

Total delegated tokens: 14
Remaining tokens: 11

With the remaining tokens, the voter can choose to allocate additional votes to the proposals based on their preferences or save for future proposals. If they feel particularly strong about Proposal A, they might decide to cast one more vote:

Additional vote on Proposal A:

  • New total votes: 4
  • New cost: 16 delegated tokens
  • Additional cost: 16−9 = 7 delegated tokens

Updated total delegated tokens: 14+7 = 21

Updated remaining tokens: 25−21 = 425 - 21 = 4

This additional vote on Proposal A costs 7 credits, significantly more than the previous vote, illustrating how the quadratic cost discourages excessive influence on a single issue without strong conviction.

Benefits of Implementing Quadratic Voting

Key Characteristics of the Quadratic Cost Function

  • Marginal Cost Increases Linearly: The marginal cost of each additional vote increases linearly. The cost difference between casting n and n−1 votes is 2n−1.
  • Total Cost Increases Quadratically: The total cost to cast multiple votes rises steeply, discouraging voters from concentrating too many votes on a single issue without significant reason.
  • Promotes Egalitarian Voting: Small voters are encouraged to participate, because relatively they have a much higher impact.

Advantages Over Traditional Voting Systems

Quadratic Voting offers several benefits compared to traditional one-person-one-vote systems:

  • Captures Preference Intensity: By allowing voters to express how strongly they feel about an issue, QV leads to outcomes that better reflect the collective welfare.
  • Reduces Majority Domination: The quadratic cost makes it costly for majority groups to overpower minority interests on every issue.
  • Encourages Honest Voting: Voters are incentivized to allocate votes in proportion to their true preferences, reducing manipulation.

By understanding the foundation of Quadratic Voting, stakeholders in Web3 communities can appreciate how this system supports more representative governance.

Conclusion

Quadratic voting is a novel voting system that may be used within DAOs to foster decentralization. The key idea is to make the cost of voting on a certain issue increase quadratically. The leading player that makes use of this mechanism is Optimism. If you're pondering about the design of your DAO, we highly recommend taking a look at their research on quadratic funding.

If you're looking to create a robust governance model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure that your DAO will stand out as a beacon of innovation and resilience in the long term.