NFT and Gaming: Chainlink Use Cases

Karolina

09 Feb 2024
NFT and Gaming: Chainlink Use Cases

Enter Chainlink, a decentralized oracle network that plays a pivotal role in bridging the gap between blockchain smart contracts and real-world data. Its relevance to gaming and NFTs is profound, particularly through its Verifiable Randomness Function (VRF). Chainlink's VRF brings a new level of integrity and fairness to the process of generating in-game items and NFTs, ensuring that the rarity and uniqueness of these assets are genuinely random and tamper-proof.

MUST READ: "What is Chainlink"

Understanding NFTs in Gaming

NFT Chainlink

Explanation of NFTs and Their Unique Properties

NFTs, or Non-Fungible Tokens, represent uniquely identifiable assets that are verified on a blockchain. NFTs are distinct, with each token having a unique set of attributes and value. This uniqueness and the ability to prove ownership securely make NFTs particularly appealing for the gaming industry, where they can represent anything from in-game items and collectibles to characters and virtual land.

The Significance of NFTs in Gaming for Creating Rare and Unique In-Game Items

In gaming, NFTs bring fresh opportunities for both players and developers. Players gain genuine ownership of in-game assets, enabling trade, sale, or use across various games and platforms. Developers find new paths in game design, engagement, and monetization. Crafting rare and unique NFT items boosts the gaming experience, fosters community, and allows players to gain real-world value from gameplay.

Chainlink's Role in Enhancing NFT Rarity and Value

Overview of Chainlink Verifiable Randomness Function (VRF) and Its Importance

Chainlink VRF revolutionizes blockchain with secure, verifiable randomness, crucial for gaming and NFT minting. Its generated randomness is blockchain-verifiable, allowing independent audits to confirm its fairness and lack of external influence.

How Chainlink VRF Ensures the Fair Minting of Rare NFTs

For the gaming industry, Chainlink VRF ensures fair and transparent NFT minting. It helps determine the attributes and rarity of new NFTs, like character skins or weapons, guaranteeing equal chances for players to get rare items. This builds trust in the gaming community and boosts NFT value, as players trust the fairness of item acquisition.

Chainlink VRF: Revolutionizing Gaming Randomness

Chainlink VRF Applications in Gaming

Chainlink's Verifiable Random Function (VRF) has emerged as a cornerstone technology for blockchain-based applications, particularly in the gaming sector, where randomness plays a critical role in various aspects ranging from character creation to in-game dynamics and rewards distribution.

Detailed Explanation of What Chainlink VRF Is and How It Works

Chainlink VRF combines block data that is still unknown when the request is made with the oracle node’s pre-committed private key to generate both a random number and a cryptographic proof. The VRF's smart contract will only accept the random number input if it has valid cryptographic proof, and the cryptographic proof can only be generated if the VRF process is tamper-proof. This ensures the randomness is provable and not manipulated, bringing fairness and transparency to the forefront of digital randomness applications.

Examples of Gaming Applications Utilizing Chainlink VRF for Randomness

Case Studies:

  • Aavegotchi. This blockchain game integrates Chainlink VRF to mint rare NFTs called "Aavegotchis," each with randomly selected attributes when a player opens a Portal. This process ensures the rarity and uniqueness of each Aavegotchi, making the game more engaging and the assets more valuable.
  • Ether Legends. This digital collectible card game leverages Chainlink VRF to distribute rare crypto-backed NFT prizes to players. The randomness ensures fairness in awarding these prizes, making competitions more exciting and rewarding.
  • Axie Infinity. Known for its vibrant digital pet universe, Axie Infinity uses Chainlink VRF to generate random traits for Origin Axies. This randomness adds a layer of unpredictability and fairness to the breeding and battling mechanics within the game.

The Advent of Dynamic NFTs

Dynamic NFTs represent a groundbreaking shift in the NFT landscape, offering assets that can evolve over time based on real-world events, player achievements, or other criteria.

MUST READ: "What is Dynamic NFT"

Introduction to Dynamic NFTs and Their Evolving Nature

Unlike traditional NFTs, which are static and unchanging, dynamic NFTs can alter in rarity, appearance, or utility. This is made possible by smart contracts that can update the NFT's attributes in response to external data inputs or on-chain events, facilitated by oracles like Chainlink.

Examples of Dynamic NFTs in Sports:

  • MLB star Trey Mancini and NBA Rookie LaMelo Ball have both launched dynamic NFTs that change based on real-life performances and achievements. These NFTs not only serve as digital collectibles but also as living records of the athletes' careers, engaging fans in a novel and interactive manner.

GameFi and Chainlink

Chainlink in Gaming

The fusion of decentralized finance (DeFi) and gaming, known as GameFi, creates a new realm where players can earn real economic rewards through gameplay.

Exploring the Intersection of Gaming and DeFi (GameFi)

Chainlink supports the growing gaming ecosystem in several ways. It provides reliable data feeds for managing in-game economies. It also offers secure random number generation to ensure fair gameplay. Additionally, Chainlink automates smart contract executions, streamlining decentralized gaming operations.

No-Loss Savings Games

A notable DeFi innovation in gaming is no-loss savings games. These games blend entertainment with financial growth opportunities.

PoolTogether as an Example

PoolTogether is a platform that illustrates this concept. It uses Chainlink VRF to randomly select winners in its no-loss savings game. In this game, users pool their funds to collectively earn interest. One lucky participant wins the accumulated interest. Meanwhile, all other players receive their initial deposits back. Chainlink's secure randomness drives this model, promoting transparency and fairness. This encourages broader participation.

Chainlink in Sports and Esports Betting

Blockchain technology enhances sports and esports betting with transparency and fairness, thanks to decentralized oracles like Chainlink. These oracles securely bring real-world data to the blockchain, essential for settling bets on actual game outcomes.

Key Takeaways

Chainlink Gaming NFTs
  • Chainlink's Impact on Gaming and NFTs: Chainlink's technology, especially its Verifiable Randomness Function (VRF) and oracle services, has significantly impacted the gaming and NFT sectors by ensuring fairness, transparency, and trust in digital randomness and real-world data integration.
  • Future Potential of Chainlink in the Gaming Industry: The potential for Chainlink to revolutionize the gaming industry extends into areas like dynamic NFTs, GameFi, and decentralized finance applications within gaming ecosystems.

Conclusion

The transformative potential of Chainlink's technology in gaming and related sectors like NFTs and betting is profound. By enabling fair and transparent randomness, verifiable real-world data integration, and dynamic asset capabilities, Chainlink is not just enhancing existing gaming and betting ecosystems but also paving the way for entirely new gaming paradigms. As the landscape of blockchain gaming and NFTs continues to evolve, Chainlink's contributions are foundational to its growth and sustainability.

FAQ

How does Chainlink's Verifiable Randomness Function (VRF) enhance the gaming and NFT sectors?

  • Chainlink's VRF ensures fairness and transparency in generating in-game items and NFTs by providing genuinely random and tamper-proof rarity and uniqueness.

What are dynamic NFTs and how do they differ from traditional NFTs?

  • Dynamic NFTs can evolve over time based on real-world events or player achievements, offering a more interactive and engaging experience compared to static traditional NFTs.

What integration challenges exist with Chainlink?

  • Issues like scalability and adoption with traditional platforms.

How does Chainlink protect NFT transactions?

  • Through secure data handling and fraud prevention mechanisms.

More about this Topic on Nextrope Blog

  1. What is Chainlink?
  2. Chainlink vs Polkadot
  3. Chainlink in DeFi: Use Cases
  4. Chainlink vs. Avalanche: Exploring the Blockchain Frontier
  5. Authorization and Identity: Chainlink Use Cases
  6. Chainlink and On-Chain Finance Use Cases

Tagi

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Aethir Tokenomics – Case Study

Kajetan Olas

22 Nov 2024
Aethir Tokenomics – Case Study

Authors of the contents are not affiliated to the reviewed project in any way and none of the information presented should be taken as financial advice.

In this article we analyze tokenomics of Aethir - a project providing on-demand cloud compute resources for the AI, Gaming, and virtualized compute sectors.
Aethir aims to aggregate enterprise-grade GPUs from multiple providers into a DePIN (Decentralized Physical Infrastructure Network). Its competitive edge comes from utlizing the GPUs for very specific use-cases, such as low-latency rendering for online games.
Due to decentralized nature of its infrastructure Aethir can meet the demands of online-gaming in any region. This is especially important for some gamer-abundant regions in Asia with underdeveloped cloud infrastructure that causes high latency ("lags").
We will analyze Aethir's tokenomics, give our opinion on what was done well, and provide specific recommendations on how to improve it.

Evaluation Summary

Aethir Tokenomics Structure

The total supply of ATH tokens is capped at 42 billion ATH. This fixed cap provides a predictable supply environment, and the complete emissions schedule is listed here. As of November 2024 there are approximately 5.2 Billion ATH in circulation. In a year from now (November 2025), the circulating supply will almost triple, and will amount to approximately 15 Billion ATH. By November 2028, today's circulating supply will be diluted by around 86%.

From an investor standpoint the rational decision would be to stake their tokens and hope for rewards that will balance the inflation. Currently the estimated APR for 3-year staking is 195% and for 4-year staking APR is 261%. The rewards are paid out weekly. Furthermore, stakers can expect to get additional rewards from partnered AI projects.

Staking Incentives

Rewards are calculated based on the staking duration and staked amount. These factors are equally important and they linearly influence weekly rewards. This means that someone who stakes 100 ATH for 2 weeks will have the same weekly rewards as someone who stakes 200 ATH for 1 week. This mechanism greatly emphasizes long-term holding. That's because holding a token makes sense only if you go for long-term staking. E.g. a whale staking $200k with 1 week lockup. will have the same weekly rewards as person staking $1k with 4 year lockup. Furthermore the ATH staking rewards are fixed and divided among stakers. Therefore Increase of user base is likely to come with decrease in rewards.
We believe the main weak-point of Aethirs staking is the lack of equivalency between rewards paid out to the users and value generated for the protocol as a result of staking.

Token Distribution

The token distribution of $ATH is well designed and comes with long vesting time-frames. 18-month cliff and 36-moths subsequent linear vesting is applied to team's allocation. This is higher than industry standard and is a sign of long-term commitment.

  • Checkers and Compute Providers: 50%
  • Ecosystem: 15%
  • Team: 12.5%
  • Investors: 11.5%
  • Airdrop: 6%
  • Advisors: 5%

Aethir's airdrop is divided into 3 phases to ensure that only loyal users get rewarded. This mechanism is very-well thought and we rate it highly. It fosters high community engagement within the first months of the project and sets the ground for potentially giving more-control to the DAO.

Governance and Community-Led Development

Aethir’s governance model promotes community-led decision-making in a very practical way. Instead of rushing with creation of a DAO for PR and marketing purposes Aethir is trying to make it the right way. They support projects building on their infrastructure and regularly share updates with their community in the most professional manner.

We believe Aethir would benefit from implementing reputation boosted voting. An example of such system is described here. The core assumption is to abandon the simplistic: 1 token = 1 vote and go towards: Votes = tokens * reputation_based_multiplication_factor.

In the attached example, reputation_based_multiplication_factor rises exponentially with the number of standard deviations above norm, with regard to user's rating. For compute compute providers at Aethir, user's rating could be replaced by provider's uptime.

Perspectives for the future

While it's important to analyze aspects such as supply-side tokenomics, or governance, we must keep in mind that 95% of project's success depends on demand-side. In this regard the outlook for Aethir may be very bright. The project declares $36M annual reccuring revenue. Revenue like this is very rare in the web3 space. Many projects are not able to generate any revenue after succesfull ICO event, due to lack fo product-market-fit.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

Quadratic Voting in Web3

Kajetan Olas

04 Dec 2024
Quadratic Voting in Web3

Decentralized systems are reshaping how we interact, conduct transactions, and govern online communities. As Web3 continues to advance, the necessity for effective and fair voting mechanisms becomes apparent. Traditional voting systems, such as the one-token-one-vote model, often fall short in capturing the intensity of individual preferences, which can result in centralization. Quadratic Voting (QV) addresses this challenge by enabling individuals to express not only their choices but also the strength of their preferences.

In QV, voters are allocated a budget of credits that they can spend to cast votes on various issues. The cost of casting multiple votes on a single issue increases quadratically, meaning that each additional vote costs more than the last. This system allows for a more precise expression of preferences, as individuals can invest more heavily in issues they care deeply about while conserving credits on matters of lesser importance.

Understanding Quadratic Voting

Quadratic Voting (QV) is a voting system designed to capture not only the choices of individuals but also the strength of their preferences. In most DAO voting mechanisms, each person typically has one vote per token, which limits the ability to express how strongly they feel about a particular matter. Furthermore, QV limits the power of whales and founding team who typically have large token allocations. These problems are adressed by making the cost of each additional vote increase quadratically.

In QV, each voter is given a budget of credits or tokens that they can spend to cast votes on various issues. The key principle is that the cost to cast n votes on a single issue is proportional to the square of n. This quadratic cost function ensures that while voters can express stronger preferences, doing so requires a disproportionately higher expenditure of their voting credits. This mechanism discourages voters from concentrating all their influence on a single issue unless they feel very strongly about it. In the context of DAOs, it means that large holders will have a hard-time pushing through with a proposal if they'll try to do it on their own.

Practical Example

Consider a voter who has been allocated 25 voting credits to spend on several proposals. The voter has varying degrees of interest in three proposals: Proposal A, Proposal B, and Proposal C.

  • Proposal A: High interest.
  • Proposal B: Moderate interest.
  • Proposal C: Low interest.

The voter might allocate their credits as follows:

Proposal A:

  • Votes cast: 3
  • Cost: 9 delegated tokens

Proposal B:

  • Votes cast: 2
  • Cost: 4 delegated tokens

Proposal C:

  • Votes cast: 1
  • Cost: 1 delegated token

Total delegated tokens: 14
Remaining tokens: 11

With the remaining tokens, the voter can choose to allocate additional votes to the proposals based on their preferences or save for future proposals. If they feel particularly strong about Proposal A, they might decide to cast one more vote:

Additional vote on Proposal A:

  • New total votes: 4
  • New cost: 16 delegated tokens
  • Additional cost: 16−9 = 7 delegated tokens

Updated total delegated tokens: 14+7 = 21

Updated remaining tokens: 25−21 = 425 - 21 = 4

This additional vote on Proposal A costs 7 credits, significantly more than the previous vote, illustrating how the quadratic cost discourages excessive influence on a single issue without strong conviction.

Benefits of Implementing Quadratic Voting

Key Characteristics of the Quadratic Cost Function

  • Marginal Cost Increases Linearly: The marginal cost of each additional vote increases linearly. The cost difference between casting n and n−1 votes is 2n−1.
  • Total Cost Increases Quadratically: The total cost to cast multiple votes rises steeply, discouraging voters from concentrating too many votes on a single issue without significant reason.
  • Promotes Egalitarian Voting: Small voters are encouraged to participate, because relatively they have a much higher impact.

Advantages Over Traditional Voting Systems

Quadratic Voting offers several benefits compared to traditional one-person-one-vote systems:

  • Captures Preference Intensity: By allowing voters to express how strongly they feel about an issue, QV leads to outcomes that better reflect the collective welfare.
  • Reduces Majority Domination: The quadratic cost makes it costly for majority groups to overpower minority interests on every issue.
  • Encourages Honest Voting: Voters are incentivized to allocate votes in proportion to their true preferences, reducing manipulation.

By understanding the foundation of Quadratic Voting, stakeholders in Web3 communities can appreciate how this system supports more representative governance.

Conclusion

Quadratic voting is a novel voting system that may be used within DAOs to foster decentralization. The key idea is to make the cost of voting on a certain issue increase quadratically. The leading player that makes use of this mechanism is Optimism. If you're pondering about the design of your DAO, we highly recommend taking a look at their research on quadratic funding.

If you're looking to create a robust governance model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure that your DAO will stand out as a beacon of innovation and resilience in the long term.