How to Design a Sustainable Tokenomics Model in a Defi Project?

Karolina

26 Feb 2024
How to Design a Sustainable Tokenomics Model in a Defi Project?

Investors look for projects that not only develop innovative products but also do it sustainably. In a way that allows for long-term growth, and resistance to uneasy conditions in the crypto market. Projects can achieve this through a studious design of their tokenomics model.

Understanding Tokenomics

Tokenomics, short for token economics, refers to the study and design of economic systems within blockchain networks and crypto projects. At its core, tokenomics encompasses the distribution, circulation, and utilization of tokens to incentivize various stakeholders and drive desired behaviors within the ecosystem.

Key Components of Sustainable Tokenomics

Token Allocation

Defining clear purposes and rules for the treasury fund to align the interests is essential. A well-defined allocation strategy ensures that tokens are distributed in a good manner. That it promotes decentralization, fosters community participation, and supports the long-term growth of the ecosystem.

Token Allocation
Source: https://messari.io/article/power-and-wealth-in-cryptoeconomies

Maintaining a balanced token allocation to achieve decentralized governance and organic project growth is critical. By distributing tokens equitably among stakeholders, projects can mitigate the risk of centralization, and foster a diverse and engaged community. While it may be tempting to allocate most tokens for the founding team and institutional investors, projects should remember that the value of their tokens is in large part determined by how decentralized the ownership structure is.

Token Vesting Schedule

Token Vesting Schedule
For example: Thetan Arena token vesting schedule: the square marks out the period September 2021 to March 2022. (https://doc.thetanarena.com/ economy/theta-gem)

Implementing a structured vesting schedule for team members, investors, and advisors is crucial to ensure the alignment of incentives and commitment. A vesting schedule gradually releases tokens over a specified period, incentivizing continued participation and discouraging short-term speculation.

Maximum Inflation

Managing inflation is a delicate balancing act for crypto projects, as excessive inflation can erode the purchasing power of tokens. Insufficient inflation may hinder growth and adoption. An important metric in that regard is Maximum Inflation, which refers to the total supply increase over time. It is calculated through dividing maximum supply by the initial supply.

Projects must carefully calibrate their inflationary policies to maintain a healthy balance between supply and demand. While also incentivizing long-term holding and participation. By adjusting maximum inflation rates in response to project needs, crypto projects can optimize tokenomics for sustainable growth and stability.

Bitcoin inflation vs. time
Bitcoin inflation vs. time. Source: Research Gate

Value Accrual

Ensuring that tokens accrue tangible value to holders is essential for fostering long-term engagement and participation within the ecosystem. Value accrual mechanisms may include utility features, governance rights, revenue-sharing mechanisms, or other incentives that incentivize holding and active participation in the project.

Strategies for Designing Sustainable Tokenomics Models

Designing Sustainable Tokenomic Models

Defining Clear Objectives

Establishing clear objectives and goals for the project's economic model is fundamental to its success. By articulating a compelling vision and roadmap, projects can attract stakeholders, align incentives, and rally support for their long-term mission. Clear objectives also provide a framework for decision-making and resource allocation, guiding the project towards sustainable growth.

Incorporating Governance Mechanisms

Implementing robust governance mechanisms is essential for ensuring democratic decision-making and community involvement in protocol upgrades and changes. By empowering token holders to vote on proposals, participate in governance discussions, and shape the future direction of the project, projects can foster a sense of ownership and accountability within the community.

Ensuring Transparency and Accountability

Promoting transparency and accountability in tokenomics design and fund management is critical for building trust and confidence among stakeholders. By providing regular updates, financial reports, and disclosures, projects can demonstrate their commitment to integrity

Case Studies: Examining Sustainable Tokenomics Models

Ethereum (ETH)

Ethereum, often regarded as the pioneer of smart contract platforms, boasts a robust tokenomics model that underpins its vibrant ecosystem. ETH serves as the native currency of the Ethereum network, facilitating transactions, powering decentralized applications (dApps), and serving as collateral for various DeFi protocols. With a clear distribution schedule, Ethereum incentivizes miners, validators, developers, and users to contribute to the network's security, scalability, and innovation.

Cardano (ADA)

Cardano ADA Allocation
Source: Coin Gecko

Cardano, one of the most prominent Layer 1 platforms, attributes much of its success to a tokenomics model focused on long-term growth. The platform itself states in its whitepaper: “The overall focus beyond a particular set of innovations is to provide a more balanced and sustainable ecosystem that better accounts for the needs of its users as well as other systems seeking integration”. Cardano tokenomics model supports sustainable development goals through research-based approach, decentralized governance structure, and well-thought treasury system. Unfortunately, commitment to sustainable growth came with a cost. Cardano Blockchain is much slower than many of its competitors, which reflects the famous blockchain trilemma (hypothesis that blockchain can’t be secure, scalable, and decentralized at the same time).

Challenges and Future Directions

Tokenomics has emerged as a powerful tool for incentivizing and coordinating decentralized networks. It also presents various challenges and areas for improvement. Addressing issues such as governance effectiveness, economic sustainability, and regulatory compliance will be crucial for advancing crypto projects, in the face of progressing regulatory scrutiny.

MUST READ: "Tokenization Regulations"

Conclusion

Tokenomics represents a foundational aspect of crypto and Web3 projects, providing the economic infrastructure needed to incentivize participation, coordinate activity, and drive value creation within decentralized networks. By designing sustainable economic models that align incentives, foster community engagement, and promote long-term growth, projects can get the best out of blockchain technology

If you're looking to design a sustainable tokenomics model for your DeFi project, please reach out to contact@nextrope.com. Our team is ready to help you create a tokenomics structure that aligns with your project's long-term growth and market resilience.

FAQ

Why is token allocation important?

  • Proper token allocation promotes decentralization and community engagement, vital for a project's success.

What's a token vesting schedule?

  • A schedule ensuring stakeholders remain committed by gradually releasing their tokens over time.

How can DeFi tokens retain value?

  • By implementing supply control mechanisms and expanding utility within the ecosystem.

What are key challenges in tokenomics design?

  • Balancing incentives, managing inflation, and navigating regulatory landscapes are significant challenges.

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Aethir Tokenomics – Case Study

Kajetan Olas

22 Nov 2024
Aethir Tokenomics – Case Study

Authors of the contents are not affiliated to the reviewed project in any way and none of the information presented should be taken as financial advice.

In this article we analyze tokenomics of Aethir - a project providing on-demand cloud compute resources for the AI, Gaming, and virtualized compute sectors.
Aethir aims to aggregate enterprise-grade GPUs from multiple providers into a DePIN (Decentralized Physical Infrastructure Network). Its competitive edge comes from utlizing the GPUs for very specific use-cases, such as low-latency rendering for online games.
Due to decentralized nature of its infrastructure Aethir can meet the demands of online-gaming in any region. This is especially important for some gamer-abundant regions in Asia with underdeveloped cloud infrastructure that causes high latency ("lags").
We will analyze Aethir's tokenomics, give our opinion on what was done well, and provide specific recommendations on how to improve it.

Evaluation Summary

Aethir Tokenomics Structure

The total supply of ATH tokens is capped at 42 billion ATH. This fixed cap provides a predictable supply environment, and the complete emissions schedule is listed here. As of November 2024 there are approximately 5.2 Billion ATH in circulation. In a year from now (November 2025), the circulating supply will almost triple, and will amount to approximately 15 Billion ATH. By November 2028, today's circulating supply will be diluted by around 86%.

From an investor standpoint the rational decision would be to stake their tokens and hope for rewards that will balance the inflation. Currently the estimated APR for 3-year staking is 195% and for 4-year staking APR is 261%. The rewards are paid out weekly. Furthermore, stakers can expect to get additional rewards from partnered AI projects.

Staking Incentives

Rewards are calculated based on the staking duration and staked amount. These factors are equally important and they linearly influence weekly rewards. This means that someone who stakes 100 ATH for 2 weeks will have the same weekly rewards as someone who stakes 200 ATH for 1 week. This mechanism greatly emphasizes long-term holding. That's because holding a token makes sense only if you go for long-term staking. E.g. a whale staking $200k with 1 week lockup. will have the same weekly rewards as person staking $1k with 4 year lockup. Furthermore the ATH staking rewards are fixed and divided among stakers. Therefore Increase of user base is likely to come with decrease in rewards.
We believe the main weak-point of Aethirs staking is the lack of equivalency between rewards paid out to the users and value generated for the protocol as a result of staking.

Token Distribution

The token distribution of $ATH is well designed and comes with long vesting time-frames. 18-month cliff and 36-moths subsequent linear vesting is applied to team's allocation. This is higher than industry standard and is a sign of long-term commitment.

  • Checkers and Compute Providers: 50%
  • Ecosystem: 15%
  • Team: 12.5%
  • Investors: 11.5%
  • Airdrop: 6%
  • Advisors: 5%

Aethir's airdrop is divided into 3 phases to ensure that only loyal users get rewarded. This mechanism is very-well thought and we rate it highly. It fosters high community engagement within the first months of the project and sets the ground for potentially giving more-control to the DAO.

Governance and Community-Led Development

Aethir’s governance model promotes community-led decision-making in a very practical way. Instead of rushing with creation of a DAO for PR and marketing purposes Aethir is trying to make it the right way. They support projects building on their infrastructure and regularly share updates with their community in the most professional manner.

We believe Aethir would benefit from implementing reputation boosted voting. An example of such system is described here. The core assumption is to abandon the simplistic: 1 token = 1 vote and go towards: Votes = tokens * reputation_based_multiplication_factor.

In the attached example, reputation_based_multiplication_factor rises exponentially with the number of standard deviations above norm, with regard to user's rating. For compute compute providers at Aethir, user's rating could be replaced by provider's uptime.

Perspectives for the future

While it's important to analyze aspects such as supply-side tokenomics, or governance, we must keep in mind that 95% of project's success depends on demand-side. In this regard the outlook for Aethir may be very bright. The project declares $36M annual reccuring revenue. Revenue like this is very rare in the web3 space. Many projects are not able to generate any revenue after succesfull ICO event, due to lack fo product-market-fit.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

Quadratic Voting in Web3

Kajetan Olas

04 Dec 2024
Quadratic Voting in Web3

Decentralized systems are reshaping how we interact, conduct transactions, and govern online communities. As Web3 continues to advance, the necessity for effective and fair voting mechanisms becomes apparent. Traditional voting systems, such as the one-token-one-vote model, often fall short in capturing the intensity of individual preferences, which can result in centralization. Quadratic Voting (QV) addresses this challenge by enabling individuals to express not only their choices but also the strength of their preferences.

In QV, voters are allocated a budget of credits that they can spend to cast votes on various issues. The cost of casting multiple votes on a single issue increases quadratically, meaning that each additional vote costs more than the last. This system allows for a more precise expression of preferences, as individuals can invest more heavily in issues they care deeply about while conserving credits on matters of lesser importance.

Understanding Quadratic Voting

Quadratic Voting (QV) is a voting system designed to capture not only the choices of individuals but also the strength of their preferences. In most DAO voting mechanisms, each person typically has one vote per token, which limits the ability to express how strongly they feel about a particular matter. Furthermore, QV limits the power of whales and founding team who typically have large token allocations. These problems are adressed by making the cost of each additional vote increase quadratically.

In QV, each voter is given a budget of credits or tokens that they can spend to cast votes on various issues. The key principle is that the cost to cast n votes on a single issue is proportional to the square of n. This quadratic cost function ensures that while voters can express stronger preferences, doing so requires a disproportionately higher expenditure of their voting credits. This mechanism discourages voters from concentrating all their influence on a single issue unless they feel very strongly about it. In the context of DAOs, it means that large holders will have a hard-time pushing through with a proposal if they'll try to do it on their own.

Practical Example

Consider a voter who has been allocated 25 voting credits to spend on several proposals. The voter has varying degrees of interest in three proposals: Proposal A, Proposal B, and Proposal C.

  • Proposal A: High interest.
  • Proposal B: Moderate interest.
  • Proposal C: Low interest.

The voter might allocate their credits as follows:

Proposal A:

  • Votes cast: 3
  • Cost: 9 delegated tokens

Proposal B:

  • Votes cast: 2
  • Cost: 4 delegated tokens

Proposal C:

  • Votes cast: 1
  • Cost: 1 delegated token

Total delegated tokens: 14
Remaining tokens: 11

With the remaining tokens, the voter can choose to allocate additional votes to the proposals based on their preferences or save for future proposals. If they feel particularly strong about Proposal A, they might decide to cast one more vote:

Additional vote on Proposal A:

  • New total votes: 4
  • New cost: 16 delegated tokens
  • Additional cost: 16−9 = 7 delegated tokens

Updated total delegated tokens: 14+7 = 21

Updated remaining tokens: 25−21 = 425 - 21 = 4

This additional vote on Proposal A costs 7 credits, significantly more than the previous vote, illustrating how the quadratic cost discourages excessive influence on a single issue without strong conviction.

Benefits of Implementing Quadratic Voting

Key Characteristics of the Quadratic Cost Function

  • Marginal Cost Increases Linearly: The marginal cost of each additional vote increases linearly. The cost difference between casting n and n−1 votes is 2n−1.
  • Total Cost Increases Quadratically: The total cost to cast multiple votes rises steeply, discouraging voters from concentrating too many votes on a single issue without significant reason.
  • Promotes Egalitarian Voting: Small voters are encouraged to participate, because relatively they have a much higher impact.

Advantages Over Traditional Voting Systems

Quadratic Voting offers several benefits compared to traditional one-person-one-vote systems:

  • Captures Preference Intensity: By allowing voters to express how strongly they feel about an issue, QV leads to outcomes that better reflect the collective welfare.
  • Reduces Majority Domination: The quadratic cost makes it costly for majority groups to overpower minority interests on every issue.
  • Encourages Honest Voting: Voters are incentivized to allocate votes in proportion to their true preferences, reducing manipulation.

By understanding the foundation of Quadratic Voting, stakeholders in Web3 communities can appreciate how this system supports more representative governance.

Conclusion

Quadratic voting is a novel voting system that may be used within DAOs to foster decentralization. The key idea is to make the cost of voting on a certain issue increase quadratically. The leading player that makes use of this mechanism is Optimism. If you're pondering about the design of your DAO, we highly recommend taking a look at their research on quadratic funding.

If you're looking to create a robust governance model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure that your DAO will stand out as a beacon of innovation and resilience in the long term.