ERC-1400 vs ERC-3643 – Comparing Token Standards

Miłosz

08 Jan 2024
ERC-1400 vs ERC-3643 – Comparing Token Standards

Imagine a world where the complexities of finance and the ingenuity of blockchain technology converge harmoniously. ERC-1400, a standard that has established rules around securities offerings, and on the other side, ERC-3643 - versatile in broadening technology utilization and tokenization horizons. They are keystones of modern funds management, each with its unique flair and profound implications. As we navigate their nuances, we’ll shed light on their roles, differences, and analogies.

Understanding ERC-1400


Origins and Purpose of ERC-1400

ERC-1400 introduces a standard for security tokens on the Ethereum blockchain. Security tokens, which illustrate digital forms of traditional investment contracts like stocks, bonds, and company shares require a token standard capable of navigating this intricate regulatory environment. The intent was to bring clarity and purified structure to the tokenization of securities, ensuring the process is compliant with existing laws and regulations. Such instruments, in particular, demand a future-thinking approach sticking to the thorough financial legal framework and its progressive traits.

Key Features of ERC-1400

ERC-1400 is characterized by several features that serve the specific needs of security tokens:

Compliance with Financial Regulations

Control and Transparency

Granular Oversight of Transactions empowers issuers with monitored access to token operations, essential for financial compliance and investor trust. The standard enables rules enforcement and qualifications for each transfer. That means all movements of the token adhere to platform operational criteria. The level of legitimacy provided by ERC-1400 supports the credibility of security token offerings, both in the eyes of regulators and institutional investors.

Comparative Analysis: ERC-1400 vs ERC-3643

ERC-1400 and ERC-3643 cater to distinct needs and scenarios. This analysis aims to contrast features, applications, and the different problems they address.

Wondering what is ERC-3643 all about and how it works? Click to learn more in our latest article.

Table 1: Core Characteristics and Use Cases

Table 2: Technical Features and Institutional Adoption

Unifying the Standards

Before exploring the differing attributes, it's important to recognize the familiar ground shared by ERC-1400 and ERC-3643:

Regulatory Compliance Focus

  • Common Goal for Ordinances Implementation: Both standards supervise legal regulatory alignment;
  • Bridging Traditional Finance and Blockchain: They facilitate wider use of blockchain in traditional economic sectors.

Modular Architecture

  • Flexibility and Customization: The solutions inherent in ERC-1400 and ERC-3643 allow developers to influence certain details of the token or adapt features to meet specific needs, from top-down legislation to highly advanced technological refinements;
  • Adaptability for Future Enhancements: This is not only about meeting current essentials but also about paving the way for future enhancement. As per their modular structure, changes can be made without the need for system overhauling, thereby future-proofing the token standards.

Distinctive Features and Differences

While ERC-1400 and ERC-3643 allocate these foundational similarities, they diverge in their purpose, scope, and technical implementations.

ERC-1400: Specialized for Security Tokens

Targeted Use Case

  • ERC-1400 serves the domain of security tokens, which are digital versions of aforementioned stocks or bonds. This standard addresses applicable and potential regulatory challenges associated with their tokenization.

Investor Protection and Financial Compliance

  • It commits to investor protection guaranteeing detailed party verification, and the proper maintenance of holders' rights.

ERC-3643: Broader Scope for Asset Tokenization

Versatile Tokenization

  • Unlike ERC-1400, ERC-3643 accommodates a wide range of assets beyond securities.

Reinforced Token Control 

  • Advanced token behavior patterns provide issuers with a higher degree of customization and control;
  • Optimized gas cost and streamlined contract processes also make it well-suited for high transaction volume and large-scale applications.

Conclusion

The comparative journey through ERC-1400 vs ERC-3643 reveals a harmonious standards coexistence. Together, despite a different purpose, they reflect the dynamic nature of blockchain technology. ERC-1400 and ERC-3643 shape the future of technology, and accordingly, with their introduction, the community has been equipped with a solid fundament to actively participate in any asset digitization.

If you are interested in utilizing ERC-3643 or other blockchain-based solutions for your project, please reach out to contact@nextrope.com

FAQ

What are the key features of ERC-1400?

  • ERC-1400 embeds legal governance into the token lifecycle, ensuring compliance with securities regulations, and provides granular oversight of transactions, enhancing control and transparency.

How do ERC-1400 and ERC-3643 unify standards?

  • Both standards focus on regulatory compliance and bridging traditional finance with blockchain technology. They feature modular architecture, offering flexibility for customization and adaptability for future enhancements.

What is the purpose of ERC-1400 and ERC-3643?

  • ERC-1400 specializes in security tokens, addressing regulatory challenges and ensuring investor protection. ERC-3643 has a broader scope for asset tokenization, providing advanced token control and optimization for high transaction volume applications.

Tagi

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Aethir Tokenomics – Case Study

Kajetan Olas

22 Nov 2024
Aethir Tokenomics – Case Study

Authors of the contents are not affiliated to the reviewed project in any way and none of the information presented should be taken as financial advice.

In this article we analyze tokenomics of Aethir - a project providing on-demand cloud compute resources for the AI, Gaming, and virtualized compute sectors.
Aethir aims to aggregate enterprise-grade GPUs from multiple providers into a DePIN (Decentralized Physical Infrastructure Network). Its competitive edge comes from utlizing the GPUs for very specific use-cases, such as low-latency rendering for online games.
Due to decentralized nature of its infrastructure Aethir can meet the demands of online-gaming in any region. This is especially important for some gamer-abundant regions in Asia with underdeveloped cloud infrastructure that causes high latency ("lags").
We will analyze Aethir's tokenomics, give our opinion on what was done well, and provide specific recommendations on how to improve it.

Evaluation Summary

Aethir Tokenomics Structure

The total supply of ATH tokens is capped at 42 billion ATH. This fixed cap provides a predictable supply environment, and the complete emissions schedule is listed here. As of November 2024 there are approximately 5.2 Billion ATH in circulation. In a year from now (November 2025), the circulating supply will almost triple, and will amount to approximately 15 Billion ATH. By November 2028, today's circulating supply will be diluted by around 86%.

From an investor standpoint the rational decision would be to stake their tokens and hope for rewards that will balance the inflation. Currently the estimated APR for 3-year staking is 195% and for 4-year staking APR is 261%. The rewards are paid out weekly. Furthermore, stakers can expect to get additional rewards from partnered AI projects.

Staking Incentives

Rewards are calculated based on the staking duration and staked amount. These factors are equally important and they linearly influence weekly rewards. This means that someone who stakes 100 ATH for 2 weeks will have the same weekly rewards as someone who stakes 200 ATH for 1 week. This mechanism greatly emphasizes long-term holding. That's because holding a token makes sense only if you go for long-term staking. E.g. a whale staking $200k with 1 week lockup. will have the same weekly rewards as person staking $1k with 4 year lockup. Furthermore the ATH staking rewards are fixed and divided among stakers. Therefore Increase of user base is likely to come with decrease in rewards.
We believe the main weak-point of Aethirs staking is the lack of equivalency between rewards paid out to the users and value generated for the protocol as a result of staking.

Token Distribution

The token distribution of $ATH is well designed and comes with long vesting time-frames. 18-month cliff and 36-moths subsequent linear vesting is applied to team's allocation. This is higher than industry standard and is a sign of long-term commitment.

  • Checkers and Compute Providers: 50%
  • Ecosystem: 15%
  • Team: 12.5%
  • Investors: 11.5%
  • Airdrop: 6%
  • Advisors: 5%

Aethir's airdrop is divided into 3 phases to ensure that only loyal users get rewarded. This mechanism is very-well thought and we rate it highly. It fosters high community engagement within the first months of the project and sets the ground for potentially giving more-control to the DAO.

Governance and Community-Led Development

Aethir’s governance model promotes community-led decision-making in a very practical way. Instead of rushing with creation of a DAO for PR and marketing purposes Aethir is trying to make it the right way. They support projects building on their infrastructure and regularly share updates with their community in the most professional manner.

We believe Aethir would benefit from implementing reputation boosted voting. An example of such system is described here. The core assumption is to abandon the simplistic: 1 token = 1 vote and go towards: Votes = tokens * reputation_based_multiplication_factor.

In the attached example, reputation_based_multiplication_factor rises exponentially with the number of standard deviations above norm, with regard to user's rating. For compute compute providers at Aethir, user's rating could be replaced by provider's uptime.

Perspectives for the future

While it's important to analyze aspects such as supply-side tokenomics, or governance, we must keep in mind that 95% of project's success depends on demand-side. In this regard the outlook for Aethir may be very bright. The project declares $36M annual reccuring revenue. Revenue like this is very rare in the web3 space. Many projects are not able to generate any revenue after succesfull ICO event, due to lack fo product-market-fit.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

Quadratic Voting in Web3

Kajetan Olas

04 Dec 2024
Quadratic Voting in Web3

Decentralized systems are reshaping how we interact, conduct transactions, and govern online communities. As Web3 continues to advance, the necessity for effective and fair voting mechanisms becomes apparent. Traditional voting systems, such as the one-token-one-vote model, often fall short in capturing the intensity of individual preferences, which can result in centralization. Quadratic Voting (QV) addresses this challenge by enabling individuals to express not only their choices but also the strength of their preferences.

In QV, voters are allocated a budget of credits that they can spend to cast votes on various issues. The cost of casting multiple votes on a single issue increases quadratically, meaning that each additional vote costs more than the last. This system allows for a more precise expression of preferences, as individuals can invest more heavily in issues they care deeply about while conserving credits on matters of lesser importance.

Understanding Quadratic Voting

Quadratic Voting (QV) is a voting system designed to capture not only the choices of individuals but also the strength of their preferences. In most DAO voting mechanisms, each person typically has one vote per token, which limits the ability to express how strongly they feel about a particular matter. Furthermore, QV limits the power of whales and founding team who typically have large token allocations. These problems are adressed by making the cost of each additional vote increase quadratically.

In QV, each voter is given a budget of credits or tokens that they can spend to cast votes on various issues. The key principle is that the cost to cast n votes on a single issue is proportional to the square of n. This quadratic cost function ensures that while voters can express stronger preferences, doing so requires a disproportionately higher expenditure of their voting credits. This mechanism discourages voters from concentrating all their influence on a single issue unless they feel very strongly about it. In the context of DAOs, it means that large holders will have a hard-time pushing through with a proposal if they'll try to do it on their own.

Practical Example

Consider a voter who has been allocated 25 voting credits to spend on several proposals. The voter has varying degrees of interest in three proposals: Proposal A, Proposal B, and Proposal C.

  • Proposal A: High interest.
  • Proposal B: Moderate interest.
  • Proposal C: Low interest.

The voter might allocate their credits as follows:

Proposal A:

  • Votes cast: 3
  • Cost: 9 delegated tokens

Proposal B:

  • Votes cast: 2
  • Cost: 4 delegated tokens

Proposal C:

  • Votes cast: 1
  • Cost: 1 delegated token

Total delegated tokens: 14
Remaining tokens: 11

With the remaining tokens, the voter can choose to allocate additional votes to the proposals based on their preferences or save for future proposals. If they feel particularly strong about Proposal A, they might decide to cast one more vote:

Additional vote on Proposal A:

  • New total votes: 4
  • New cost: 16 delegated tokens
  • Additional cost: 16−9 = 7 delegated tokens

Updated total delegated tokens: 14+7 = 21

Updated remaining tokens: 25−21 = 425 - 21 = 4

This additional vote on Proposal A costs 7 credits, significantly more than the previous vote, illustrating how the quadratic cost discourages excessive influence on a single issue without strong conviction.

Benefits of Implementing Quadratic Voting

Key Characteristics of the Quadratic Cost Function

  • Marginal Cost Increases Linearly: The marginal cost of each additional vote increases linearly. The cost difference between casting n and n−1 votes is 2n−1.
  • Total Cost Increases Quadratically: The total cost to cast multiple votes rises steeply, discouraging voters from concentrating too many votes on a single issue without significant reason.
  • Promotes Egalitarian Voting: Small voters are encouraged to participate, because relatively they have a much higher impact.

Advantages Over Traditional Voting Systems

Quadratic Voting offers several benefits compared to traditional one-person-one-vote systems:

  • Captures Preference Intensity: By allowing voters to express how strongly they feel about an issue, QV leads to outcomes that better reflect the collective welfare.
  • Reduces Majority Domination: The quadratic cost makes it costly for majority groups to overpower minority interests on every issue.
  • Encourages Honest Voting: Voters are incentivized to allocate votes in proportion to their true preferences, reducing manipulation.

By understanding the foundation of Quadratic Voting, stakeholders in Web3 communities can appreciate how this system supports more representative governance.

Conclusion

Quadratic voting is a novel voting system that may be used within DAOs to foster decentralization. The key idea is to make the cost of voting on a certain issue increase quadratically. The leading player that makes use of this mechanism is Optimism. If you're pondering about the design of your DAO, we highly recommend taking a look at their research on quadratic funding.

If you're looking to create a robust governance model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure that your DAO will stand out as a beacon of innovation and resilience in the long term.