How Layer 2 will affect the future of Ethereum?

Maciej Zieliński

25 Aug 2021
How Layer 2 will affect the future of Ethereum?

Will Layer 2 solve the problem of high fees resulting from Ethereum network congestion? We believe it will. However, many question marks remain.

Ethereum's popularity also has its dark side. As the network becomes more crowded, transaction speeds slow down and fees (gas) increase. Layer 2 is the collective term for solutions to improve application scaling by handling transactions outside of Ethereum's core network, while leveraging its decentralized security model. It is Layer 2 that was supposed to be the answer to the problems facing dapps developers and users today. However, will it overcome the obstacles facing it? 

Why do we need Layer 2?

It was Ethereum that allowed the world of decentralized finance to emerge, but there are still a few problems standing in the way of its further development. Ethereum is currently only able to process 15 transactions per second. This is not much compared to Mastercard or Visa, which are able to process up to 1,500 of them at the same time. 

There are a number of problems with this - the network is often congested, which translates into gas charges, often raising them to extremely high values. Of course, this does not positively affect the scaling of the entire network, nor the dapps on Ethereum built. 

These problems are supposed to be solved by the ongoing upgrade to Ethereum 2.0. However, it will still take a relatively long time before this upgrade is complete. And already today at peak times Ethereum usage reaches up to a million transactions a day, so solutions are needed much sooner. 

Examples of Layer 2 solutions

Among L2 solutions, there is a breakdown into basic categories, including:

Plasma

These types of solutions use Merkle trees to create an additional chain next to the main blockchain. This allows for faster transactions while reducing costs, since not all data is stored in the ledger. 

However, Plasma also has its limitations: its framework supports only a fraction of transaction types, so it is not suitable for use with more complex DeFi operations.

Examples of Plasma solutions include: Polygon and OMG

Channels

Channels allow users to perform multiple transactions off the main chain, while sending two of them to the settlement layer, Ethereum. This significantly increases throughput and lowers costs, but as with Plasma, it has some limitations. First, users must be known prior to transactions and deposit funds as part of a multi-tenant agreement. As a result, the network must be monitored regularly. In addition, setting up channels between users is relatively time consuming, which limits the openness of participation.   

Examples of channels include: Raiden Connext.

Sidechains

Sidechains are chains that operate independently of the main blockchain, using their own consensus algorithm. They connect to Ethereum using bidirectional bridges. 

Examples of Sidechains include Skale i xDAI.

Layer 2 restrictions

Layer 2 solutions are supposed to solve the major problems of Ethereum 2.0, but unfortunately they also turn out to have their potential limitations. Of course, this does not change the fact that Layer 2 remains a necessary step in the right direction, even in the context of upgrading to Ethereum 2.0. The throughput and speed that Layer 2 solutions offer cannot be achieved on Layer 1 of the Ethereum 2.0 network alone. 

However, it is worth remembering that currently Layer 2 is not yet perfect. Here are some of its problems:

Less Composability

It is the composability that is one of the most important features of modern DeFi. Thanks to the mutual compatibility of disparate designs, decentralized finance has been able to conquer the hearts of users around the world. 

Unfortunately, this feature is limited in Layer 2 - currently different Layer 2 solutions do not work together.  In short, a dapp on one chain will not be able to interact with a dapp built on another. 

In Layer One, a single transaction can interact with multiple Defi protocols; in L2, a transaction can only interact with those that exist in its own chain.  

The solution to this problem is seen in interoperable layers such as Polygon, which is supposed to combine all Layer 2 solutions in a standard structure. However, it will take some time before this happens. 

Liquidity

Another issue related to the fragmentation of decentralized applications on different L2 chains is the risk of liquidity constraints. And this, as is well known, is one of the most important elements of financial markets. 

Currently, liquidity is guaranteed by the Ethereum network, providing a liquid marketplace for tokens and dApps created on it. It remains an open question as to what effect transparency on Layer 2 will have on liquidity when it is split between the first Ethereum layer and scaling solutions. 

Problems when switching between solutions 

Unfortunately, at least in the initial phases of development, friction between Layer 2 solutions will not be avoided. We will most likely see numerous bridges between different chains, which may involve long deployment times when moving funds between chains. 

Users can also expect to need to have multiple accounts for different L2 chains. From a UX perspective, this will present one of the most significant problems. 

Implementing Layer 2 solutions with Nextrope

Of course, all of the problems identified above are entirely solvable, and the Ethereum community will likely deal with them as soon as all major Layer 2 scaling solutions are publicly released. 

In this context, a robust network of L2-L2 bridges seems particularly important to maintain compatibility and smooth transitions between different chains. At Nextrope, we have experience in building bridges of various types. If you are looking for a technology partner to create a scalable solution, schedule a free consultation with our experts: contact@nextrope.com. 

Tagi

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Aethir Tokenomics – Case Study

Kajetan Olas

22 Nov 2024
Aethir Tokenomics – Case Study

Authors of the contents are not affiliated to the reviewed project in any way and none of the information presented should be taken as financial advice.

In this article we analyze tokenomics of Aethir - a project providing on-demand cloud compute resources for the AI, Gaming, and virtualized compute sectors.
Aethir aims to aggregate enterprise-grade GPUs from multiple providers into a DePIN (Decentralized Physical Infrastructure Network). Its competitive edge comes from utlizing the GPUs for very specific use-cases, such as low-latency rendering for online games.
Due to decentralized nature of its infrastructure Aethir can meet the demands of online-gaming in any region. This is especially important for some gamer-abundant regions in Asia with underdeveloped cloud infrastructure that causes high latency ("lags").
We will analyze Aethir's tokenomics, give our opinion on what was done well, and provide specific recommendations on how to improve it.

Evaluation Summary

Aethir Tokenomics Structure

The total supply of ATH tokens is capped at 42 billion ATH. This fixed cap provides a predictable supply environment, and the complete emissions schedule is listed here. As of November 2024 there are approximately 5.2 Billion ATH in circulation. In a year from now (November 2025), the circulating supply will almost triple, and will amount to approximately 15 Billion ATH. By November 2028, today's circulating supply will be diluted by around 86%.

From an investor standpoint the rational decision would be to stake their tokens and hope for rewards that will balance the inflation. Currently the estimated APR for 3-year staking is 195% and for 4-year staking APR is 261%. The rewards are paid out weekly. Furthermore, stakers can expect to get additional rewards from partnered AI projects.

Staking Incentives

Rewards are calculated based on the staking duration and staked amount. These factors are equally important and they linearly influence weekly rewards. This means that someone who stakes 100 ATH for 2 weeks will have the same weekly rewards as someone who stakes 200 ATH for 1 week. This mechanism greatly emphasizes long-term holding. That's because holding a token makes sense only if you go for long-term staking. E.g. a whale staking $200k with 1 week lockup. will have the same weekly rewards as person staking $1k with 4 year lockup. Furthermore the ATH staking rewards are fixed and divided among stakers. Therefore Increase of user base is likely to come with decrease in rewards.
We believe the main weak-point of Aethirs staking is the lack of equivalency between rewards paid out to the users and value generated for the protocol as a result of staking.

Token Distribution

The token distribution of $ATH is well designed and comes with long vesting time-frames. 18-month cliff and 36-moths subsequent linear vesting is applied to team's allocation. This is higher than industry standard and is a sign of long-term commitment.

  • Checkers and Compute Providers: 50%
  • Ecosystem: 15%
  • Team: 12.5%
  • Investors: 11.5%
  • Airdrop: 6%
  • Advisors: 5%

Aethir's airdrop is divided into 3 phases to ensure that only loyal users get rewarded. This mechanism is very-well thought and we rate it highly. It fosters high community engagement within the first months of the project and sets the ground for potentially giving more-control to the DAO.

Governance and Community-Led Development

Aethir’s governance model promotes community-led decision-making in a very practical way. Instead of rushing with creation of a DAO for PR and marketing purposes Aethir is trying to make it the right way. They support projects building on their infrastructure and regularly share updates with their community in the most professional manner.

We believe Aethir would benefit from implementing reputation boosted voting. An example of such system is described here. The core assumption is to abandon the simplistic: 1 token = 1 vote and go towards: Votes = tokens * reputation_based_multiplication_factor.

In the attached example, reputation_based_multiplication_factor rises exponentially with the number of standard deviations above norm, with regard to user's rating. For compute compute providers at Aethir, user's rating could be replaced by provider's uptime.

Perspectives for the future

While it's important to analyze aspects such as supply-side tokenomics, or governance, we must keep in mind that 95% of project's success depends on demand-side. In this regard the outlook for Aethir may be very bright. The project declares $36M annual reccuring revenue. Revenue like this is very rare in the web3 space. Many projects are not able to generate any revenue after succesfull ICO event, due to lack fo product-market-fit.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

Quadratic Voting in Web3

Kajetan Olas

04 Dec 2024
Quadratic Voting in Web3

Decentralized systems are reshaping how we interact, conduct transactions, and govern online communities. As Web3 continues to advance, the necessity for effective and fair voting mechanisms becomes apparent. Traditional voting systems, such as the one-token-one-vote model, often fall short in capturing the intensity of individual preferences, which can result in centralization. Quadratic Voting (QV) addresses this challenge by enabling individuals to express not only their choices but also the strength of their preferences.

In QV, voters are allocated a budget of credits that they can spend to cast votes on various issues. The cost of casting multiple votes on a single issue increases quadratically, meaning that each additional vote costs more than the last. This system allows for a more precise expression of preferences, as individuals can invest more heavily in issues they care deeply about while conserving credits on matters of lesser importance.

Understanding Quadratic Voting

Quadratic Voting (QV) is a voting system designed to capture not only the choices of individuals but also the strength of their preferences. In most DAO voting mechanisms, each person typically has one vote per token, which limits the ability to express how strongly they feel about a particular matter. Furthermore, QV limits the power of whales and founding team who typically have large token allocations. These problems are adressed by making the cost of each additional vote increase quadratically.

In QV, each voter is given a budget of credits or tokens that they can spend to cast votes on various issues. The key principle is that the cost to cast n votes on a single issue is proportional to the square of n. This quadratic cost function ensures that while voters can express stronger preferences, doing so requires a disproportionately higher expenditure of their voting credits. This mechanism discourages voters from concentrating all their influence on a single issue unless they feel very strongly about it. In the context of DAOs, it means that large holders will have a hard-time pushing through with a proposal if they'll try to do it on their own.

Practical Example

Consider a voter who has been allocated 25 voting credits to spend on several proposals. The voter has varying degrees of interest in three proposals: Proposal A, Proposal B, and Proposal C.

  • Proposal A: High interest.
  • Proposal B: Moderate interest.
  • Proposal C: Low interest.

The voter might allocate their credits as follows:

Proposal A:

  • Votes cast: 3
  • Cost: 9 delegated tokens

Proposal B:

  • Votes cast: 2
  • Cost: 4 delegated tokens

Proposal C:

  • Votes cast: 1
  • Cost: 1 delegated token

Total delegated tokens: 14
Remaining tokens: 11

With the remaining tokens, the voter can choose to allocate additional votes to the proposals based on their preferences or save for future proposals. If they feel particularly strong about Proposal A, they might decide to cast one more vote:

Additional vote on Proposal A:

  • New total votes: 4
  • New cost: 16 delegated tokens
  • Additional cost: 16−9 = 7 delegated tokens

Updated total delegated tokens: 14+7 = 21

Updated remaining tokens: 25−21 = 425 - 21 = 4

This additional vote on Proposal A costs 7 credits, significantly more than the previous vote, illustrating how the quadratic cost discourages excessive influence on a single issue without strong conviction.

Benefits of Implementing Quadratic Voting

Key Characteristics of the Quadratic Cost Function

  • Marginal Cost Increases Linearly: The marginal cost of each additional vote increases linearly. The cost difference between casting n and n−1 votes is 2n−1.
  • Total Cost Increases Quadratically: The total cost to cast multiple votes rises steeply, discouraging voters from concentrating too many votes on a single issue without significant reason.
  • Promotes Egalitarian Voting: Small voters are encouraged to participate, because relatively they have a much higher impact.

Advantages Over Traditional Voting Systems

Quadratic Voting offers several benefits compared to traditional one-person-one-vote systems:

  • Captures Preference Intensity: By allowing voters to express how strongly they feel about an issue, QV leads to outcomes that better reflect the collective welfare.
  • Reduces Majority Domination: The quadratic cost makes it costly for majority groups to overpower minority interests on every issue.
  • Encourages Honest Voting: Voters are incentivized to allocate votes in proportion to their true preferences, reducing manipulation.

By understanding the foundation of Quadratic Voting, stakeholders in Web3 communities can appreciate how this system supports more representative governance.

Conclusion

Quadratic voting is a novel voting system that may be used within DAOs to foster decentralization. The key idea is to make the cost of voting on a certain issue increase quadratically. The leading player that makes use of this mechanism is Optimism. If you're pondering about the design of your DAO, we highly recommend taking a look at their research on quadratic funding.

If you're looking to create a robust governance model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure that your DAO will stand out as a beacon of innovation and resilience in the long term.