Blockchain for the Planet: The Rise of Eco-Friendly Cryptocurrency Initiatives

Paulina Lewandowska

08 Mar 2023
Blockchain for the Planet: The Rise of Eco-Friendly Cryptocurrency Initiatives

Introduction

Innovative solutions, especially in the cryptocurrency industry, are developing as people throughout the world become more aware of the effects of climate change. This essay will examine three various cryptocurrency initiatives that seek to promote environmental preservation. Blockchain technology is being used in these initiatives to encourage and track carbon emission reductions, boost ecosystem regeneration, and offset carbon footprints. By offering creative ways to fund sustainable projects, these initiatives have the potential to have a big impact on the fight against climate change. But, before making an investing decision, it is crucial to conduct careful study.

Flowcarbon

A cryptocurrency startup called Flowcarbon appears to be trying to combat climate change by using blockchain technology to reward projects that reduce carbon emissions.

On their website, Flowcarbon claims that their blockchain technology tracks the reductions in carbon emissions and turns them into carbon credits that can be exchanged on a carbon market. Individuals and organizations can purchase and sell the credits, and the money raised can be used to fund eco-friendly initiatives and reduce carbon emissions.

The Proof-of-Reduction (PoR) consensus mechanism is used by the Flowcarbon platform to verify carbon emission reductions and record them on the blockchain. The business asserts that this procedure guarantees transparency and completely disallows double-counting or fraud.

The Flowcarbon team consists of experts in carbon markets, blockchain technology, and sustainable development. The project is still in its early stages, but by offering a new approach to encourage and finance carbon reduction projects, it has the potential to have a huge impact on the fight against climate change.

Klima DAO

A decentralized autonomous organization (DAO), Klima DAO, promotes carbon emission reduction as a means of preventing climate change. The concept is based on the Ethereum blockchain and was introduced in 2021.

The main goal of Klima DAO is to establish a system where individuals and companies can contribute money to buy carbon credits, which are then retired (or taken out of circulation) to reduce the carbon emissions caused by their operations. They want to create a decentralized, open, and transparent market for carbon credits.

KLIMA tokens, which stand for a percentage of a tonne of carbon emissions that have been reduced through the retirement of carbon credits, can be bought by people and businesses through the Klima DAO system. These credits are obtained from initiatives that have been shown to lower carbon emissions, like those involving renewable energy or forestry.

The offset is permanent since once the carbon credits have been retired, no one else can use them. Additionally, Klima DAO makes sure that the initiatives from which they buy carbon credits follow stringent environmental and social guidelines, avoiding initiatives that can have a negative impact on regional residents or wildlife.

Additionally, Klima DAO has a governance structure that enables KLIMA token owners to suggest and approve changes to the project. This gives the community a voice in how the project runs and develops over time.

Regen Network

By providing verified carbon sequestration and other ecosystem services, the decentralized Regen Network, founded on blockchain technology, intends to aid in the regeneration of the planet's ecosystems. Through this project, a new economic paradigm that values and rewards ecological health will be established.

The Cosmos network, which permits interoperability across several blockchains, serves as the foundation for Regen Network, which was introduced in 2018. The REGEN token, which powers the project and is intended to reward and motivate network actors, is utilized to operate it.

Regen Network's main objective is to develop a platform where ecological data can be safely stored, validated, and shared. Information on soil health, biodiversity, carbon sequestration, and other ecosystem services is included in this data. Participants can gain REGEN tokens on the network by adding to the data pool by monitoring and validating ecological data.

Also, Regen Network makes it easier to create and trade ecosystem service credits that are supported by actual ecological data. Individuals, groups, and governments can acquire these credits to reduce their carbon footprint or aid in ecosystem regrowth.

The platform has a governance structure that lets token owners suggest and decide on adjustments to the way the network runs and develops. As a result, decisions can be made decentralized and the network will develop in a way that is consistent with the community's beliefs.

Conclusion

In conclusion, cryptocurrency initiatives are becoming cutting-edge responses to the battle against climate change. These projects use blockchain technology to encourage carbon emission reductions, track them, aid in ecosystem regeneration, and offset their carbon footprints. These ventures could have a big impact since they offer creative methods to finance environmentally friendly projects. These initiatives show the potential of technology to support international efforts to lessen the effects of climate change.

Also, check out 3 eco-friendly blockchains which revolutionize the industry!

Most viewed


Never miss a story

Stay updated about Nextrope news as it happens.

You are subscribed

Aethir Tokenomics – Case Study

Kajetan Olas

22 Nov 2024
Aethir Tokenomics – Case Study

Authors of the contents are not affiliated to the reviewed project in any way and none of the information presented should be taken as financial advice.

In this article we analyze tokenomics of Aethir - a project providing on-demand cloud compute resources for the AI, Gaming, and virtualized compute sectors.
Aethir aims to aggregate enterprise-grade GPUs from multiple providers into a DePIN (Decentralized Physical Infrastructure Network). Its competitive edge comes from utlizing the GPUs for very specific use-cases, such as low-latency rendering for online games.
Due to decentralized nature of its infrastructure Aethir can meet the demands of online-gaming in any region. This is especially important for some gamer-abundant regions in Asia with underdeveloped cloud infrastructure that causes high latency ("lags").
We will analyze Aethir's tokenomics, give our opinion on what was done well, and provide specific recommendations on how to improve it.

Evaluation Summary

Aethir Tokenomics Structure

The total supply of ATH tokens is capped at 42 billion ATH. This fixed cap provides a predictable supply environment, and the complete emissions schedule is listed here. As of November 2024 there are approximately 5.2 Billion ATH in circulation. In a year from now (November 2025), the circulating supply will almost triple, and will amount to approximately 15 Billion ATH. By November 2028, today's circulating supply will be diluted by around 86%.

From an investor standpoint the rational decision would be to stake their tokens and hope for rewards that will balance the inflation. Currently the estimated APR for 3-year staking is 195% and for 4-year staking APR is 261%. The rewards are paid out weekly. Furthermore, stakers can expect to get additional rewards from partnered AI projects.

Staking Incentives

Rewards are calculated based on the staking duration and staked amount. These factors are equally important and they linearly influence weekly rewards. This means that someone who stakes 100 ATH for 2 weeks will have the same weekly rewards as someone who stakes 200 ATH for 1 week. This mechanism greatly emphasizes long-term holding. That's because holding a token makes sense only if you go for long-term staking. E.g. a whale staking $200k with 1 week lockup. will have the same weekly rewards as person staking $1k with 4 year lockup. Furthermore the ATH staking rewards are fixed and divided among stakers. Therefore Increase of user base is likely to come with decrease in rewards.
We believe the main weak-point of Aethirs staking is the lack of equivalency between rewards paid out to the users and value generated for the protocol as a result of staking.

Token Distribution

The token distribution of $ATH is well designed and comes with long vesting time-frames. 18-month cliff and 36-moths subsequent linear vesting is applied to team's allocation. This is higher than industry standard and is a sign of long-term commitment.

  • Checkers and Compute Providers: 50%
  • Ecosystem: 15%
  • Team: 12.5%
  • Investors: 11.5%
  • Airdrop: 6%
  • Advisors: 5%

Aethir's airdrop is divided into 3 phases to ensure that only loyal users get rewarded. This mechanism is very-well thought and we rate it highly. It fosters high community engagement within the first months of the project and sets the ground for potentially giving more-control to the DAO.

Governance and Community-Led Development

Aethir’s governance model promotes community-led decision-making in a very practical way. Instead of rushing with creation of a DAO for PR and marketing purposes Aethir is trying to make it the right way. They support projects building on their infrastructure and regularly share updates with their community in the most professional manner.

We believe Aethir would benefit from implementing reputation boosted voting. An example of such system is described here. The core assumption is to abandon the simplistic: 1 token = 1 vote and go towards: Votes = tokens * reputation_based_multiplication_factor.

In the attached example, reputation_based_multiplication_factor rises exponentially with the number of standard deviations above norm, with regard to user's rating. For compute compute providers at Aethir, user's rating could be replaced by provider's uptime.

Perspectives for the future

While it's important to analyze aspects such as supply-side tokenomics, or governance, we must keep in mind that 95% of project's success depends on demand-side. In this regard the outlook for Aethir may be very bright. The project declares $36M annual reccuring revenue. Revenue like this is very rare in the web3 space. Many projects are not able to generate any revenue after succesfull ICO event, due to lack fo product-market-fit.

If you're looking to create a robust tokenomics model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure your project’s resilience in the long term.

Quadratic Voting in Web3

Kajetan Olas

04 Dec 2024
Quadratic Voting in Web3

Decentralized systems are reshaping how we interact, conduct transactions, and govern online communities. As Web3 continues to advance, the necessity for effective and fair voting mechanisms becomes apparent. Traditional voting systems, such as the one-token-one-vote model, often fall short in capturing the intensity of individual preferences, which can result in centralization. Quadratic Voting (QV) addresses this challenge by enabling individuals to express not only their choices but also the strength of their preferences.

In QV, voters are allocated a budget of credits that they can spend to cast votes on various issues. The cost of casting multiple votes on a single issue increases quadratically, meaning that each additional vote costs more than the last. This system allows for a more precise expression of preferences, as individuals can invest more heavily in issues they care deeply about while conserving credits on matters of lesser importance.

Understanding Quadratic Voting

Quadratic Voting (QV) is a voting system designed to capture not only the choices of individuals but also the strength of their preferences. In most DAO voting mechanisms, each person typically has one vote per token, which limits the ability to express how strongly they feel about a particular matter. Furthermore, QV limits the power of whales and founding team who typically have large token allocations. These problems are adressed by making the cost of each additional vote increase quadratically.

In QV, each voter is given a budget of credits or tokens that they can spend to cast votes on various issues. The key principle is that the cost to cast n votes on a single issue is proportional to the square of n. This quadratic cost function ensures that while voters can express stronger preferences, doing so requires a disproportionately higher expenditure of their voting credits. This mechanism discourages voters from concentrating all their influence on a single issue unless they feel very strongly about it. In the context of DAOs, it means that large holders will have a hard-time pushing through with a proposal if they'll try to do it on their own.

Practical Example

Consider a voter who has been allocated 25 voting credits to spend on several proposals. The voter has varying degrees of interest in three proposals: Proposal A, Proposal B, and Proposal C.

  • Proposal A: High interest.
  • Proposal B: Moderate interest.
  • Proposal C: Low interest.

The voter might allocate their credits as follows:

Proposal A:

  • Votes cast: 3
  • Cost: 9 delegated tokens

Proposal B:

  • Votes cast: 2
  • Cost: 4 delegated tokens

Proposal C:

  • Votes cast: 1
  • Cost: 1 delegated token

Total delegated tokens: 14
Remaining tokens: 11

With the remaining tokens, the voter can choose to allocate additional votes to the proposals based on their preferences or save for future proposals. If they feel particularly strong about Proposal A, they might decide to cast one more vote:

Additional vote on Proposal A:

  • New total votes: 4
  • New cost: 16 delegated tokens
  • Additional cost: 16−9 = 7 delegated tokens

Updated total delegated tokens: 14+7 = 21

Updated remaining tokens: 25−21 = 425 - 21 = 4

This additional vote on Proposal A costs 7 credits, significantly more than the previous vote, illustrating how the quadratic cost discourages excessive influence on a single issue without strong conviction.

Benefits of Implementing Quadratic Voting

Key Characteristics of the Quadratic Cost Function

  • Marginal Cost Increases Linearly: The marginal cost of each additional vote increases linearly. The cost difference between casting n and n−1 votes is 2n−1.
  • Total Cost Increases Quadratically: The total cost to cast multiple votes rises steeply, discouraging voters from concentrating too many votes on a single issue without significant reason.
  • Promotes Egalitarian Voting: Small voters are encouraged to participate, because relatively they have a much higher impact.

Advantages Over Traditional Voting Systems

Quadratic Voting offers several benefits compared to traditional one-person-one-vote systems:

  • Captures Preference Intensity: By allowing voters to express how strongly they feel about an issue, QV leads to outcomes that better reflect the collective welfare.
  • Reduces Majority Domination: The quadratic cost makes it costly for majority groups to overpower minority interests on every issue.
  • Encourages Honest Voting: Voters are incentivized to allocate votes in proportion to their true preferences, reducing manipulation.

By understanding the foundation of Quadratic Voting, stakeholders in Web3 communities can appreciate how this system supports more representative governance.

Conclusion

Quadratic voting is a novel voting system that may be used within DAOs to foster decentralization. The key idea is to make the cost of voting on a certain issue increase quadratically. The leading player that makes use of this mechanism is Optimism. If you're pondering about the design of your DAO, we highly recommend taking a look at their research on quadratic funding.

If you're looking to create a robust governance model and go through institutional-grade testing please reach out to contact@nextrope.com. Our team is ready to help you with the token engineering process and ensure that your DAO will stand out as a beacon of innovation and resilience in the long term.